flowtorch.data

flowtorch.data.dataloader

Definition of a common interface for all dataloaders.

This abstract base class should be used as parent class when defining new dataloaders, e.g., to support additional file formats.

class flowtorch.data.dataloader.Dataloader[source]

Bases: abc.ABC

Abstract base class to define a common interface for dataloaders.

abstract property field_names

Create a dictionary containing availale fields

Returns

dictionary with write times as keys and field names as values

Return type

Dict[str, List[str]]

abstract load_snapshot(field_name: Union[List[str], str], time: Union[List[str], str]) → Union[List[torch.Tensor], torch.Tensor][source]

Load one or more snapshots of one or more fields.

Parameters
  • field_name (Union[List[str], str]) – name of the field to load

  • time (Union[List[str], str]) – snapshot time

Returns

field values

Return type

Union[List[Tensor], Tensor]

abstract property vertices

Get the vertices at which field values are defined.

Returns

coordinates of vertices

Return type

Tensor

abstract property weights

Get the weights for field values.

In a standard finite volume method, the weights are the cell volumes. For other methods, the definition of the weight is described in the Dataloader implementation.

Returns

weight for field values

Return type

Tensor

abstract property write_times

Available write times.

Returns

list of available write times

Return type

List[str]

flowtorch.data.foam_dataloader

Classes to work with OpenFOAM cases, meshes, and fields.

The FOAMDataloader class allows to load fields from an OpenFOAM simulation folder. Currently, only the ESI-OpenCFD branch of OpenFOAM is supported (v1912, v2006). The FOAMCase class assembles information about the folder and file structure of a simulation. The FOAMMesh allows loading and parsing the finite volume mesh.

class flowtorch.data.foam_dataloader.FOAMCase(path: str)[source]

Bases: object

Class to access and parse OpenFOAM cases.

Most of the attributes and methods are private because they are typically accessed via a FOAMDataloader instance.

_eval_distributed() → bool[source]

Check if the simulation case is distributed (parallel).

Warning

Collated output is currently not supported/not detected.

Returns

True if distributed

Return type

bool

_eval_processors() → int[source]

Get number of processor folders.

Returns

number of processor folders or 1 for serial runs

Return type

int

_eval_write_times() → List[str][source]

Assemble a list of all write times.

Returns

a list of all time folders

Return type

list(str)

Warning

For distributed simulations, it is assumed that all processor folders contain the same time folders.

_eval_field_names() → Dict[str, List[str]][source]

Get a dictionary of all fields and files in all time folders.

Warning

For distributed cases, only processor0 is evaluated. The fields for all other processors are assumed to be the same.

Returns

dictionary with write times as keys and a list of field names for each time as values

Return type

dict

build_file_path(field_name: str, time: str, processor: int = 0) → str[source]

Create the path to file inside the time folder of a simulation.

Parameters
  • field_name (str) – name of the field or file, e.g., “U” or “p”

  • time (str) – name of the time folder, e.g., “0.01”

  • processor (int, optional) – processor folder to load the data from; ignored in serial simulation cases; defaults to 0

Returns

path to file inside a time folder

Return type

str

Examples

>>> from flowtorch.data import FOAMCase
>>> case = FOAMCase("./cavity_binary_parallel/")
>>> case._distributed
True
>>> case._processors
4
>>> case._time_folders
['0', '0.1', '0.2', '0.3', '0.4', '0.5']
>>> case._field_names
{'0': ['U', 'p'], '0.1': ['U', 'p', 'phi'], '0.2': ['U', 'p', 'phi'], '0.3': [
    'U', 'p', 'phi'], '0.4': ['U', 'p', 'phi'], '0.5': ['U', 'p', 'phi']}
>>> case.build_file_path("U", "0.1", 1)
'./cavity_binary_parallel/processor1/0.1/U'
class flowtorch.data.foam_dataloader.FOAMDataloader(path: str, dtype: str = torch.float32)[source]

Bases: flowtorch.data.dataloader.Dataloader

Load internal fields and mesh properties of OpenFOAM cases.

The project ofpp by Xu Xianghua has been a great help to implement some of the methods.

Examples

>>> from flowtorch import DATASETS
>>> from flowtorch.data import FOAMDataloader
>>> path = DATASETS["of_cavity_ascii_parallel"]
>>> loader = FOAMDataloader(path)
>>> loader.write_times
['0', '0.1', '0.2', '0.3', '0.4', '0.5']
>>> loader.field_names
{'0': ['p', 'U'], '0.1': ['p', 'phi', 'U'], '0.2': ['p', 'phi', 'U'], '0.3': [
    'p', 'phi', 'U'], '0.4': ['p', 'phi', 'U'], '0.5': ['p', 'phi', 'U']}
>>> vertices = loader.vertices
>>> vertices[:3]
tensor([[0.0025, 0.0025, 0.0050],
        [0.0075, 0.0025, 0.0050],
        [0.0125, 0.0025, 0.0050]])
>>> loader.weights[:3]  # cell volumes
tensor([2.5000e-07, 2.5000e-07, 2.5000e-07])
>>> p = loader.load_snapshot("p", "0.5")
>>> p.shape
torch.Size([400])
>>> p[:3]
tensor([ 4.2993e-06, -5.8226e-03, -1.2960e-02])
property field_names

Access to the available field names for all available write times via FOAMCase._eval_field_names().

Getter

returns names of availabe fields

Type

Dict[str, List[str]]

load_snapshot(field_name: Union[List[str], str], time: Union[List[str], str]) → Union[List[torch.Tensor], torch.Tensor][source]

Load one or more snapshots of one or more fields.

Parameters
  • field_name (Union[List[str], str]) – name of the field to load

  • time (Union[List[str], str]) – snapshot time

Returns

field values

Return type

Union[List[Tensor], Tensor]

property vertices

In OpenFOAM, field for post-processing are defined at the control volume’s center (vol<Type>Fields). Therefore, the vertices property enables access to cell center locations via FOAMMesh.

Getter

returns control volume centers

Type

pt.Tensor

property weights

For results obtained using a finite volume method with co-located arrangement (OpenFOAM), a sensible weight for a cell-centered value is the cell volume. The cell volumes are availabe via the FOAMMesh class.

Getter

returns cell volumes

Type

pt.Tensor

property write_times

Access to available snapshot/write times via FOAMCase._eval_write_times().

Getter

returns the available write times

Type

List[str]

class flowtorch.data.foam_dataloader.FOAMMesh(case: flowtorch.data.foam_dataloader.FOAMCase, dtype: str = torch.float32)[source]

Bases: object

Class to load and process OpenFOAM meshes.

OpenFOAM stores the finite volume mesh as a collection of several files located in constant/polyMesh or in processorXX/constant/polyMesh for serial and distributed cases, respectively. Even though OpenFOAM is a cell-centered finite volume method, the cell-centers and volumes are not explicitly stored. Instead, a so-called face-addressing storage is used. All internal faces have an owner cell and a neighbor cell. Boundary faces only have an owner cell. The mesh attributes are defined in several files:

  • points: list of vertices forming cell faces; the list index of a point is used as label

  • faces: list of all cell faces defined as point labels

  • owner: list of cell labels that are face owners

  • neighbour: list of cell labels that are face neighbors; BE spelling

  • boundary: definition of faces belonging to a patch

Examples

>>> from flowtorch.data import FOAMMesh
>>> mesh = FOAMMesh.from_path("./")
>>> centers = mesh.get_cell_centers()
>>> centers.size()
torch.Size([400, 3])
>>> centers[:2]
tensor([[0.0025, 0.0025, 0.0050],
        [0.0075, 0.0025, 0.0050]])
>>> volumes = mesh.get_cell_volumes()
>>> volumes.size()
torch.Size([400])
>>> volumes[:2]
tensor([2.5000e-07, 2.5000e-07])

Warning

Dynamically changing meshes are currently not supported.

Warning

Distributed meshes may be parsed and concatenated, but the cell centers and volumes won’t have the same ordering as when computed from a reconstructed mesh.

_compute_face_centers_and_areas(points: torch.Tensor, faces: torch.Tensor, n_points_faces: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor][source]

Compute face centers and areas.

The implemented algorithm is close to the one in makeFaceCentresAndAreas. The main steps are:

  1. compute an estimate of the face center by averaging all face vertices

  2. decompose the face into triangles

  3. compute the sum over all area-weighted triangle centroids, triangle areas, and face area normal vectors

  4. compute the face centroid and face area normal from the (weighted) sums

_compute_cell_centers_and_volumes(mesh_path: str) → Tuple[torch.Tensor, torch.Tensor][source]

Compute the cell centers and volumes of an OpenFOAM mesh.

The implemented algorithm is close to the one in makeCellCentresAndVols. The following steps are involved:

  1. compute an estimate of the cell center as the average over all face centers

  2. compute centroids and volumes of all pyramids formed by the cell faces and and the center estimate

  3. the cell volume equals the sum over all pyramid volumes

  4. the cell center is the volume-weighted average of all pyramid centroids

classmethod from_path(path: str, dtype: str = torch.float32)[source]

Create FOAMMesh object based on path to OpenFOAM simulation case.

get_cell_centers() → torch.Tensor[source]

Return or compute and return control volume centers.

Returns

control volume centers

Return type

pt.Tensor

get_cell_volumes() → torch.Tensor[source]

Return or compute and return cell volumes.

Returns

cell volumes

Return type

pt.Tensor

flowtorch.data.hdf5_file

Module to read and write the internal flowTorch data format.

The HDF5Writer class allows to write field and mesh data into an HDF5 file. It also creates an XDMF accessor file for postprocessing in ParaView. The XDMF file creation is implemented in the XDMFWriter class. The HDF5Dataloader class is the complementary writer for the flowTorch data format. Moreover, the FOAM2HDF5 class allows conversion of reconstructed OpenFOAM simulation cases into the HDF5-based flowTorch format.

class flowtorch.data.hdf5_file.FOAM2HDF5(path: str, dtype=torch.float32)[source]

Bases: object

Convert reconstructed OpenFOAM cases to flowTorch HDF5 format.

If the simulation case is decomposed into processor folders/domains, an info statement is displayed and no conversion is performed.

Examples

>>> from flowtorch import DATASETS
>>> from flowtorch.data import FOAM2HDF5
>>> converter = FOAM2HDF5(DATASETS["of_cavity_ascii"])
>>> converter.convert("cavity.hdf5", skip_zero=True)
convert(filename: str, skip_zero: bool = True)[source]

Convert OpenFOAM case to flowTorch HDF5 file.

Parameters
  • filename (str) – name of the HDF5 file

  • skip_zero (bool, optional) – skip zero folder if true; defaults to True

class flowtorch.data.hdf5_file.HDF5Dataloader(file_path: str, dtype: str = torch.float32)[source]

Bases: flowtorch.data.dataloader.Dataloader

Load HDF5-based flowTorch data.

Examples

>>> from flowtorch import HDF5Dataloader
>>> loader = HDF5Dataloader("flowtorch.hdf5")
>>> times = loader.write_times
>>> p, U = loader.load_snapshot(["p", "U"], write_times)
>>> vertices = loader.vertices
property field_names

Create a dictionary containing availale fields

Returns

dictionary with write times as keys and field names as values

Return type

Dict[str, List[str]]

load_snapshot(field_name: Union[List[str], str], time: Union[List[str], str]) → Union[List[torch.Tensor], torch.Tensor][source]

Load one or more snapshots of one or more fields.

Parameters
  • field_name (Union[List[str], str]) – name of the field to load

  • time (Union[List[str], str]) – snapshot time

Returns

field values

Return type

Union[List[Tensor], Tensor]

property vertices

Get the vertices at which field values are defined.

Returns

coordinates of vertices

Return type

Tensor

property weights

Get the weights for field values.

In a standard finite volume method, the weights are the cell volumes. For other methods, the definition of the weight is described in the Dataloader implementation.

Returns

weight for field values

Return type

Tensor

property write_times

Available write times.

Returns

list of available write times

Return type

List[str]

class flowtorch.data.hdf5_file.HDF5Writer(file: str)[source]

Bases: object

Class to write flowTorch data to HDF5 file.

Two types of data are supported: - variable: (field) data that changes with times, e.g, snapshots - constant: constant data like mesh vertices or cell volumes

An XDMF accessor file can be created to support visual post-processing with ParaView and other XDMF-compatible software packages.

Examples

>>> import torch as pt
>>> from flowtorch.data import HDF5Writer
>>> writer = HDF5Writer("test_file.hdf5")
>>> writer.write("ones", (3, 2), pt.ones((3, 2)), "0.01")
>>> int_data =  pt.ones((3, 2), dtype=pt.int32)
>>> writer.write("ones_int", (3, 2), int_data, dtype=pt.int32)
write(name: str, size: tuple, data: Optional[torch.Tensor] = None, time: Optional[str] = None, dtype: str = torch.float32)[source]

Write data to HDF5 file.

Parameters
  • name (str) – dataset name

  • size (tuple) – dataset shape

  • data (pt.Tensor, optional) – data to write; if None, dataset is only allocated

  • time (str, optional) – snapshot time, dataset if created in VAR_GROUP if present

  • dtype (str, optional) – data type, defaults to pt.float32

write_xdmf()[source]
class flowtorch.data.hdf5_file.XDMFWriter(file_path: str, hdf5_file: h5py._hl.files.File)[source]

Bases: object

Create XDMF file to open flowTorch HDF5 files in ParaView.

Example

>>> from flowtorch.data import XDMFWriter
>>> writer = XDMFWriter("flowtorch.hdf5")
>>> writer.create_xdmf("flowtorch.xdmf")
create_xdmf(filename: Optional[str] = None)[source]
Parameters

filename ([type]) – [description]

classmethod from_filepath(file_path: str)[source]

Create XDMFWriter from file path.

Parameters

file_path (str) – path to HDF5 file

flowtorch.data.psp_dataloader

Module to load FOR2895 iPSP data.

The PSPDataloader class allows to load instationary pressure-sensitive paint (iPSP) data provided by DLR (Deutsches Luft- und Raumfahrtzentrum) within the FOR2895 research group.

class flowtorch.data.psp_dataloader.PSPDataloader(path: str, dtype: str = torch.float32)[source]

Bases: flowtorch.data.dataloader.Dataloader

Load iPSP data and meta data.

iPSP data comes as an HDF5 file with datasets organized in different zones. Each zone has additional meta data related to flow conditions and camera setting. The active zone may be switched by seeting the zone attribute.

Examples

>>> from flowtorch import PSPDataloader
>>> loader = PSPDataloader("0226.hdf5")
>>> loader.zone_names
['Zone0000', 'Zone0001']
>>> loader.info.keys()
['AngleAttackAlpha', 'DateOfRecording', 'Mach', ...]
>>> loader.info["Mach"]
(0.903, 'Mach number')
>>> loader.zone_info.keys()
['ExposureTime', 'NumberImages', 'PSPDeviceName', 'SamplingFrequency', 'ZoneName']
>>> loader.zone
Zone0000
>>> loader.zone = "Zone0001"
>>> loader.zone_info["ZoneName"]
HTP
>>> cp = loader.load_snapshot("Cp", loader.write_times[:10])
>>> cp.shape
torch.Size([250, 75, 10])
property field_names

Create a dictionary containing availale fields

Returns

dictionary with write times as keys and field names as values

Return type

Dict[str, List[str]]

property info
load_snapshot(field_name: Union[List[str], str], time: Union[List[str], str]) → Union[List[torch.Tensor], torch.Tensor][source]

Load one or more snapshots of one or more fields.

Parameters
  • field_name (Union[List[str], str]) – name of the field to load

  • time (Union[List[str], str]) – snapshot time

Returns

field values

Return type

Union[List[Tensor], Tensor]

property vertices

Get the vertices at which field values are defined.

Returns

coordinates of vertices

Return type

Tensor

property weights

Get the weights for field values.

In a standard finite volume method, the weights are the cell volumes. For other methods, the definition of the weight is described in the Dataloader implementation.

Returns

weight for field values

Return type

Tensor

property write_times

Available write times.

Returns

list of available write times

Return type

List[str]

property zone
property zone_info
property zone_names

flowtorch.data.vtk_dataloader

Class and tools to read Visualization Toolkit (VTK) data.

class flowtorch.data.vtk_dataloader.VTKDataloader(path: str, vtk_reader: Union[vtkmodules.vtkIOLegacy.vtkUnstructuredGridReader, vtkmodules.vtkIOXML.vtkXMLUnstructuredGridReader], prefix: str = '', suffix: str = '', dtype: str = torch.float32)[source]

Bases: flowtorch.data.dataloader.Dataloader

Load unstructured VTK files and time series.

The loader assumes that snapshots are stored in individual VTK files. Currently, only unstructured mesh data are supported.

Examples

>>> from flowtorch import DATASETS
>>> from flowtorch.data import VTKDataloader
>>> path = DATASETS["vtk_cylinder_re200_flexi"]
>>> loader = VTKDataloader.from_flexi(path, "Cylinder_Re200_Solution_")
>>> loader.write_times
["0000000", "0000005", "0000300"]
>>> loader.field_names
{'0000000': ['Density', 'MomentumX', 'MomentumY', 'MomentumZ']}
>>> density = loader.load_snapshot("Density", loader.write_times)
>>> density.shape
torch.Size([729000, 3])
>>> from flowtorch import DATASETS
>>> from flowtorch.data import VTKDataloader
>>> path = DATASETS["vtk_su2_airfoil_2D"]
>>> loader = VTKDataloader.from_su2(path, "flow_")
>>> p, U = loader.load_snapshot(["Pressure", "Velocity"], loader.write_times[0])
>>> U.shape
torch.Size([214403, 3])
property field_names

Create a dictionary containing availale fields

Returns

dictionary with write times as keys and field names as values

Return type

Dict[str, List[str]]

classmethod from_flexi(path: str, prefix: str = '', suffix: str = '.000000000.vtu', dtype: str = torch.float32)[source]

Create loader instance from VTK files generated by Flexi.

Flexi supports the output of field and surface data as unstructured XML-based VTK files.

Parameters
  • path (str) – path to folder containing VTK files

  • prefix (str, optional) – part of file name before time value, defaults to “”

  • suffix (str, optional) – part of file name after time value, defaults to “.000000000.vtu”

  • dtype (str, optional) – tensor type, defaults to DEFAULT_DTYPE

classmethod from_su2(path: str, prefix: str = '', suffix: str = '.vtk', dtype: str = torch.float32)[source]

Create loader instance from VTK files generated by SU2.

Parameters
  • path (str) – path to folder containing VTK files

  • prefix (str, optional) – part of file name before time value, defaults to “”

  • suffix (str, optional) – part of file name after time value, defaults to “.vtk”

  • dtype (str, optional) – tensor type, defaults to DEFAULT_DTYPE

load_snapshot(field_name: Union[List[str], str], time: Union[List[str], str]) → Union[List[torch.Tensor], torch.Tensor][source]

Load one or more snapshots of one or more fields.

Parameters
  • field_name (Union[List[str], str]) – name of the field to load

  • time (Union[List[str], str]) – snapshot time

Returns

field values

Return type

Union[List[Tensor], Tensor]

property vertices

Get the vertices at which field values are defined.

Returns

coordinates of vertices

Return type

Tensor

property weights

Get the weights for field values.

In a standard finite volume method, the weights are the cell volumes. For other methods, the definition of the weight is described in the Dataloader implementation.

Returns

weight for field values

Return type

Tensor

property write_times

Available write times.

Returns

list of available write times

Return type

List[str]

flowtorch.data.csv_dataloader

Dataloader and accompanying tools to work with CSV files.

A lot of scientific data is exchanged as comma separated value (CSV) files. While there are many Python packages available to read such data, one has to understand how the data is organized in the CSV file before being able to use the readers properly. Moreover, time series data sometimes come as individual files in a single folder or as time folders with the respective snapshot data inside that folder. This subpackages simplifies access to common CSV-based time series data by trying to figure out appropriate reader settings automatically.

class flowtorch.data.csv_dataloader.CSVDataloader(path: str, prefix: str, suffix: str, read_options: dict, time_folders: bool, dtype: str = torch.float32)[source]

Bases: flowtorch.data.dataloader.Dataloader

Load CSV files from different sources.

This class allows to load generic CSV files based on Pandas’s load_csv function. Multiple specific formats are supported via class methods.

Examples

>>> from flowtorch import DATASETS
>>> from flowtorch.data import CSVDataloader
>>> davis_data = DATASETS["csv_aoa8_beta0_xc100_stereopiv"]
>>> loader = CSVDataloader.from_davis(davis_data, "B")
>>> times = loader.write_times
>>> times[:5]
['00001', '00002', '00003', '00004', '00005']
>>> loader.field_names
{'00001': ['Vx', 'Vy', 'Vz']}
>>> Vx, Vy, Vz = loader.load_snapshot(['Vx', 'Vy', 'Vz'], times[:5])
>>> Vx.shape
torch.Size([3741, 5])
>>> foam_data = DATASETS["csv_naca0012_alpha4_surface"]
>>> loader = CSVDataloader.from_foam_surface(foam_data, "total(p)_coeff_airfoil.raw", "cp")
>>> times = loader.write_times
>>> times[:5]
['0.001', '0.002', '0.003', '0.004', '0.005']
>>> loader.field_names
{'0.001': ['cp']}
>>> snapshots = loader.load_snapshot("cp", times[:10])
>>> snapshots.shape
torch.Size([28892, 10])
>>> vertices = loader.vertices
>>> vertices.shape
torch.Size([28892, 3])
>>> vertices[0, :]
tensor([0.0000e+00, 0.0000e+00, 4.1706e-18])
property field_names

Create a dictionary containing availale fields

Returns

dictionary with write times as keys and field names as values

Return type

Dict[str, List[str]]

classmethod from_davis(path: str, prefix: str = '', suffix: str = '.dat', dtype: str = torch.float32)[source]

Create CSVDataloader instance for DaVis output files.

Parameters
  • path (str) – path to location of time series data

  • prefix (str) – part of the file name before the time/snapshot number; e.g., if the file name B00001.dat, the prefix is B; defaults to empty string

  • suffix (str) – part of the file name of the time/snapshot number; e.g., if the file name is B00001.dat, the suffix is .dat; defaults to .dat

  • dtype (str) – floating point precision; defaults to pt.float32 (single precision)

classmethod from_foam_surface(path: str, file_name: str, field_name: Optional[str] = None, dtype: str = torch.float32)[source]

Create CSVDataloader instance to load OpenFOAM surface sample data.

The class method simplifies to load data generated by OpenFOAM’s sampling function object if the type is set to surfaces and the surfaceFormat is set to raw. The time series data are stored in individual time folders. The file name remains the same.

Parameters
  • path (str) – path to location of time folders

  • file_name (str) – file name of individual CSV files, e.g., p_airfoil.raw

  • field_name (str) – each CSV contains only one field; this parameter allows to prescribe a descriptive access name; defaults to None, which chooses the generic field name f.

  • dtype (str) – floating point precision; defaults to pt.float32 (single precision)

load_snapshot(field_name: Union[List[str], str], time: Union[List[str], str]) → Union[List[torch.Tensor], torch.Tensor][source]

Load one or more snapshots of one or more fields.

Parameters
  • field_name (Union[List[str], str]) – name of the field to load

  • time (Union[List[str], str]) – snapshot time

Returns

field values

Return type

Union[List[Tensor], Tensor]

property vertices

Get the vertices at which field values are defined.

Returns

coordinates of vertices

Return type

Tensor

property weights

Get the weights for field values.

In a standard finite volume method, the weights are the cell volumes. For other methods, the definition of the weight is described in the Dataloader implementation.

Returns

weight for field values

Return type

Tensor

property write_times

Available write times.

Returns

list of available write times

Return type

List[str]

flowtorch.data.tau_dataloader

Direct access to TAU simulation data.

The DRL (Deutsches Luft- und Raumfahrtzentrum) TAU code saves snapshots in the NetCFD format. The TAUDataloader is a wrapper around the NetCFD Python bindings to simplify the access to snapshot data.

class flowtorch.data.tau_dataloader.TAUDataloader(path: str, base_name: str, dtype: str = torch.float32)[source]

Bases: flowtorch.data.dataloader.Dataloader

Load TAU simulation data.

TAU simulations output results in several netCDF files, one for each write time. The mesh is stored in a separated file with the extension .grd. Currently, the loader only enables access to field data but not to boundaries.

Examples

>>> from flowtorch import DATASETS
>>> from flowtorch.data import TAUDataloader
>>> path = DATASETS["tau_backward_facing_step"]
>>> loader = TAUDataloader(path, base_name="sol.pval.unsteady_")
>>> times = loader.write_times
>>> fields = loader.field_names[times[0]]
>>> fields
['density', 'x_velocity', 'y_velocity', ...]
>>> density = loader.load_snapshot("density", times)
>>> density.shape
torch.Size([1119348, 10])
property field_names

Create a dictionary containing availale fields

Returns

dictionary with write times as keys and field names as values

Return type

Dict[str, List[str]]

load_snapshot(field_name: Union[List[str], str], time: Union[List[str], str]) → Union[List[torch.Tensor], torch.Tensor][source]

Load one or more snapshots of one or more fields.

Parameters
  • field_name (Union[List[str], str]) – name of the field to load

  • time (Union[List[str], str]) – snapshot time

Returns

field values

Return type

Union[List[Tensor], Tensor]

property vertices

Get the vertices at which field values are defined.

Returns

coordinates of vertices

Return type

Tensor

property weights

Get the weights for field values.

In a standard finite volume method, the weights are the cell volumes. For other methods, the definition of the weight is described in the Dataloader implementation.

Returns

weight for field values

Return type

Tensor

property write_times

Available write times.

Returns

list of available write times

Return type

List[str]

flowtorch.data.selection_tools

Helper tools for building data matrices.

flowtorch.data.selection_tools.mask_box(vertices: torch.Tensor, lower: List[float], upper: List[float]) → torch.Tensor[source]

Create a boolean mask to select all vertices in a box.

This function may be used in conjunction with torch.masked_select to select all field values in a box, e.g., when building data matrices.

Parameters
  • vertices (pt.Tensor) – tensor of vertices, where each column corresponds to a coordinate

  • lower (List[float]) – lower bounds of box; one value for each coordinate must be given

  • upper (List[float]) – upper bounds of box; one value for each coordinate must be given

Returns

boolean mask that’s True for every vertex inside the box

Return type

pt.Tensor

flowtorch.data.selection_tools.mask_sphere(vertices: torch.Tensor, center: List[float], radius: float) → torch.Tensor[source]

Create a boolean mask to select all vertices in a sphere.

This function may be used in conjunction with torch.masked_select to select all field values within a sphere, e.g., when building data matrices.

Parameters
  • vertices (pt.Tensor) – tensor of vertices, where each column corresponds to a coordinate

  • center (List[float]) – the sphere’s center

  • radius (float) – the sphere’s radius

Returns

boolean mask that’s True for every vertex inside the sphere

Return type

pt.Tensor

flowtorch.data.utils

Collection of utilities realted to data and dataloaders.

flowtorch.data.utils.check_and_standardize_path(path: str, folder: bool = True)[source]

Check if path exists and remove trailing slash if present.

Parameters
  • path (str) – path to folder or file

  • folder (bool) – True if path points to folder; False if path points to file

Returns

standardized path to file or folder

Return type

str

flowtorch.data.utils.check_list_or_str(arg_value: Union[List[str], str], arg_name: str)[source]

Check if argument is of type list or string.

If the input is a list, an additional check is performed to ensure that the list has at list one entry and that all entries are strings.

Parameters
  • arg_value (Union[List[str], str]) – object to perform the check on

  • arg_name – additional argument name to provide informative error message

  • arg_name – str

flowtorch.data.utils.format_byte_size(size: int) → Tuple[float, str][source]

Convert number of bytes into human-readable format.

The function is based on this <https://stackoverflow.com/questions/12523586/python-format-size-application-converting-b-to-kb-mb-gb-tb> Stackoverflow question.

Parameters

size – size in bytes

Returns

converted size corresponding unit

Return type

tuple(float, str)