Source code for flowtorch.analysis.dmd

"""Classes and functions to compute the dynamic mode decomposition (DMD) of a data matrix.
"""

# standard library packages
from typing import Tuple, Set
# third party packages
import torch as pt
from numpy import pi
# flowtorch packages
from .svd import SVD
from flowtorch.data.utils import format_byte_size


[docs]class DMD(object): """Class computing the exact DMD of a data matrix. Currently, no advanced mode selection algorithms are implemented. The mode amplitudes are computed using the first snapshot. Examples >>> from flowtorch import DATASETS >>> from flowtorch.data import FOAMDataloader >>> from flowtorch.analysis import DMD >>> path = DATASETS["of_cavity_binary"] >>> loader = FOAMDataloader(path) >>> data_matrix = loader.load_snapshot("p", loader.write_times) >>> dmd = DMD(data_matrix, dt=0.1, rank=3) >>> dmd.frequency tensor([0., 5., 0.]) >>> dmd.growth_rate tensor([-2.3842e-06, -4.2345e+01, -1.8552e+01]) >>> dmd.amplitude tensor([10.5635+0.j, -0.0616+0.j, -0.0537+0.j]) """ def __init__(self, data_matrix: pt.Tensor, dt: float, rank: int = None): """Create DMD instance based on data matrix and time step. :param data_matrix: data matrix whose columns are formed by the individual snapshots :type data_matrix: pt.Tensor :param dt: time step between two snapshots :type dt: float :param rank: rank for SVD truncation, defaults to None :type rank: int, optional """ self._dm = data_matrix self._dt = dt self._svd = SVD(self._dm[:, :-1], rank) self._eigvals, self._eigvecs, self._modes = self._compute_mode_decomposition() def _compute_mode_decomposition(self): """Compute reduced operator, eigen decomposition, and DMD modes. """ s_inv = pt.diag(1.0 / self._svd.s) operator = ( self._svd.U.conj().T @ self._dm[:, 1:] @ self._svd.V @ s_inv ) val, vec = pt.linalg.eig(operator) # type conversion is currently not implemented for pt.complex32 # such that the dtype for the modes is always pt.complex64 phi = ( self._dm[:, 1:].type(val.dtype) @ self._svd.V.type(val.dtype)
[docs] @ s_inv.type(val.dtype) @ vec ) return val, vec, phi def partial_reconstruction(self, mode_indices: Set[int]) -> pt.Tensor: """Reconstruct data matrix with limited number of modes. :param mode_indices: mode indices to keep :type mode_indices: Set[int] :return: reconstructed data matrix :rtype: pt.Tensor """ rows, cols = self.modes.shape mode_mask = pt.zeros(cols, dtype=pt.complex64) mode_indices = pt.tensor(list(mode_indices), dtype=pt.int64) mode_mask[mode_indices] = 1.0 reconstruction = (self.modes * mode_mask) @ self.dynamics if self._dm.dtype in (pt.complex64, pt.complex32): return reconstruction.type(self._dm.dtype) else: return reconstruction.real.type(self._dm.dtype)
@property def required_memory(self) -> int: """Compute the memory size in bytes of the DMD. :return: cumulative size of SVD, eigen values/vectors, and DMD modes in bytes :rtype: int """ return (self._svd.required_memory + self._eigvals.element_size() * self._eigvals.nelement() + self._eigvecs.element_size() * self._eigvecs.nelement() + self._modes.element_size() * self._modes.nelement()) @property def svd(self) -> SVD: return self._svd @property def modes(self) -> pt.Tensor: return self._modes @property def eigvals(self) -> pt.Tensor: return self._eigvals @property def eigvecs(self) -> pt.Tensor: return self._eigvecs @property def frequency(self) -> pt.Tensor: return pt.log(self._eigvals).imag / (2.0 * pi * self._dt) @property def growth_rate(self) -> pt.Tensor: return (pt.log(self._eigvals) / self._dt).real @property def amplitude(self) -> pt.Tensor: return pt.linalg.pinv(self._modes) @ self._dm[:, 0].type(self._modes.dtype) @property def dynamics(self) -> pt.Tensor: return pt.diag(self.amplitude) @ pt.vander(self.eigvals, self._dm.shape[-1], True) @property def reconstruction(self) -> pt.Tensor: if self._dm.dtype in (pt.complex64, pt.complex32): return (self._modes @ self.dynamics).type(self._dm.dtype) else: return (self._modes @ self.dynamics).real.type(self._dm.dtype) def __repr__(self): return f"{self.__class__.__qualname__}(data_matrix, rank={self._svd.rank})" def __str__(self): ms = ["SVD:", str(self.svd), "LSQ:"] size, unit = format_byte_size(self.required_memory) ms.append("Overall DMD size: {:1.4f}{:s}".format(size, unit)) return "\n".join(ms)