Source code for flowtorch.rom.utils

"""Collection of utilities for reduced-order modeling.
"""

# standars library packages
from time import time
import functools
from typing import Callable, Union, List
# third party libraries
import numpy as np


[docs]def log_time(func) -> dict: """Measure and log a function's execution time. :param func: function to be executed; the function is expected to return a dictionary :type func: Callable :return: dictionary returned by the wrapped function with additional entry for execution time :rtype: dict """ @functools.wraps(func) def measure_time(*args, **kwargs) -> dict: start_time = time() log = func(*args, **kwargs) return {**log, "execution_time": time()-start_time} return measure_time
[docs]def check_larger_than(value: Union[int, float], limit: Union[int, float], name: str): """Check if a scalar value is larger than a given lower limit. :param value: scalar value to check :type value: Union[int, float] :param value: lower limit to check against :type value: Union[int, float] :param name: name of the parameter :type name: str :raises ValueError: if the argument is less than or equal to the lower limit """ if value <= limit: raise ValueError( f"The argument for {name} must be larger than {limit}")
[docs]def check_int_larger_than(value: int, limit: int, name: str): """Check if input is an integer larger than a given lower limit. :param value: input value to check :type value: int :param limit: the value must be larger than the limit :type limit: int :param name: name of the parameter :type name: str :raises ValueError: if the argument is not an integer """ message = f"The argument of {name} must be an integer larger than {limit}" if not isinstance(value, int): raise ValueError(message) check_larger_than(value, limit, name)
[docs]def remove_sequential_duplicates(sequence: np.ndarray) -> np.ndarray: """Get sequence of integers without sequential duplicates. :param sequence: input sequence to check :type sequence: np.ndarray :return: sequence without sequential duplicates :rtype: np.ndarray """ is_different = np.diff(sequence).astype(bool) return sequence[np.insert(is_different, 0, True)]